PreconceptGene

GeneHealth UK
PreconceptGene

The majority of all babies are born healthy however; everyone is at risk of having a child with a genetic disease, even if they have no family history or symptoms of disease. Unfortunately individuals of Ashkenazi Jewish ancestry have a higher risk to have children with certain genetic conditions, such as Tay Sachs and it is estimated that approximately 1 in 5 Jewish people will be carriers of a genetic condition. Therefore some couples may decide to have genetic testing to try to clarify their risk of having a child with an inherited condition. As with all genetic tests, PreconceptGene is not able to look for all possible genetic conditions and does not test for chromosome abnormalities such as Down syndrome.

PreconceptGene analyses more than 200 common genes which can cause inherited diseases. Some of these diseases, such as Tay Sachs, may be lethal in childhood while others may have a lesser effect on a person’s health. This test includes 22 X linked genes and 191 autosomal recessive conditions.

Common genetic conditions

Of the 213 conditions tested, 57 genetic conditions are more common in the Jewish population. The most common conditions are discussed below and include:

- Bloom syndrome
- Canavan disease
- Cystic fibrosis
- Fanconi anaemia
- Familial dysautonomia
- Familial hyperinsulinism
- Mucolipidosis type IV
- Niemann-Pick disease type A
- Tay-Sachs disease
Bloom syndrome
Bloom syndrome causes short stature, sun-sensitive skin changes, an increased risk of cancer, and other health problems, including learning difficulties, diabetes, recurrent chest and ear infections, fertility problems in men and women and early menopause in women.

Canavan disease
Canavan disease causes progressive damage to nerve cells in the brain. Infants start to have developmental problems at 3 to 5 months of age, have weak muscle tone, an unusually large head size, and intellectual disability. Feeding and swallowing difficulties, seizures, and sleep disturbances may also develop. The life expectancy for people with Canavan disease varies: most affected individuals pass away in childhood, although some survive into adolescence or beyond.

Cystic fibrosis
Cystic fibrosis causes a build-up of thick, sticky mucus which can cause damage to the body’s organs, including the lungs and pancreas. The life expectancy for people with cystic fibrosis varies. Currently, most affected individuals will live in to their 30s or early 40s.

Familial dysautonomia
Familial dysautonomia affects the development and survival of nerve cells. Problems related to this condition first appear during infancy. Early signs and symptoms include poor muscle tone, feeding difficulties, poor growth, lack of tears, frequent lung infections, and difficulty maintaining body temperature and sometimes learning disabilities. By adulthood, affected individuals often have increasing difficulties with balance and walking unaided.

Familial hyperinsulinism
Familial hyperinsulinism causes abnormally high levels of insulin, which is a hormone that helps control blood sugar levels. People with this condition have frequent symptoms caused by low blood sugar including lack of energy, irritability, and/or difficulty feeding. Repeated episodes of low blood sugar increase the risk for serious complications such as seizures, intellectual disability, breathing difficulties, and coma.

Fanconi anaemia
Fanconi anaemia affects many parts of the body and can cause bone marrow failure, physical abnormalities, fertility problems and organ defects. Individuals with Fanconi anaemia also have an increased risk of developing cancer. Affected individuals experience extreme tiredness, anaemia, and clotting problems due to low numbers of platelets.

Mucolipidosis type IV
Mucolipidosis type IV causes delayed development and progressive vision loss. People with typical mucolipidosis type IV have delayed development of mental and physical skills including sitting, standing, walking, grasping objects, and writing. Affected individuals have intellectual disability, limited or absent speech, difficulty chewing and swallowing, weak muscle tone that gradually turns into abnormal muscle stiffness, and problems controlling hand movements. Most people with typical mucolipidosis type IV are unable to walk independently. People with the severe form of this disorder usually survive to adulthood; however, they may have a shortened lifespan.

Niemann-Pick disease type A
Niemann-Pick disease type A appears during infancy and causes an enlarged liver and spleen, failure to gain weight and grow at the expected rate, and progressive deterioration of the nervous system. Children affected by this condition generally do not survive past early childhood.

Tay-Sachs disease
Tay-Sachs disease is an inherited condition that progressively destroys nerve cells in the brain and spinal cord. Symptoms tend to start at 3 to 6 months of age and as the disease progresses, children with Tay-Sachs disease experience seizures, vision and hearing loss, intellectual disability, and paralysis. Children with the severe infantile form of Tay-Sachs disease usually live only into early childhood.

The table overleaf shows the conditions which are more common in the Jewish community and the risk of being a carrier.
<table>
<thead>
<tr>
<th>Disease</th>
<th>Carrier Rate</th>
<th>Detection rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Methylglutaconic Aciduria: Type 3</td>
<td>1/10</td>
<td>>99%</td>
</tr>
<tr>
<td>21-Hydroxylase Deficient Classical Congenital Adrenal Hyperplasia</td>
<td>1/62</td>
<td>Unknown</td>
</tr>
<tr>
<td>21-Hydroxylase Deficient Nonclassical Congenital Adrenal Hyperplasia</td>
<td>1/3</td>
<td>Unknown</td>
</tr>
<tr>
<td>Abetalipoproteinemia</td>
<td>1/131</td>
<td>75%</td>
</tr>
<tr>
<td>α-Thalassemia (18)</td>
<td>1/48</td>
<td>92%</td>
</tr>
<tr>
<td>Amegakaryocytic Thrombocytopenia (3)</td>
<td>1/76</td>
<td>>99%</td>
</tr>
<tr>
<td>Ataxia-Telangiectasia (19)</td>
<td>1/81</td>
<td>97%</td>
</tr>
<tr>
<td>Beta-Hexosaminidase Pseudodeficiency (2)</td>
<td>Unknown</td>
<td>>99%</td>
</tr>
<tr>
<td>-Thalassemia (91)</td>
<td>1/159</td>
<td>Unknown</td>
</tr>
<tr>
<td>Bloom Syndrome (9)</td>
<td>1/134</td>
<td>97%</td>
</tr>
<tr>
<td>Canavan Disease (8)</td>
<td>1/55</td>
<td>99%</td>
</tr>
<tr>
<td>Cerebrotendinous Xanthomatosis (13)</td>
<td>1/6</td>
<td>88%</td>
</tr>
<tr>
<td>Choreaancanthocytosis (1)</td>
<td>Unknown</td>
<td>67%</td>
</tr>
<tr>
<td>Corticosterone Methyloxidase Deficiency (3)</td>
<td>1/32</td>
<td>73%</td>
</tr>
<tr>
<td>Cystic Fibrosis (124)</td>
<td>1/23</td>
<td>97%</td>
</tr>
<tr>
<td>Familial Dysautonomia (3)</td>
<td>1/31</td>
<td>>99%</td>
</tr>
<tr>
<td>Familial Hyperinsulinism: Type 1: ABCC8-related (8)</td>
<td>1/52</td>
<td>99%</td>
</tr>
<tr>
<td>Familial Mediterranean Fever (11)</td>
<td>1/81</td>
<td>76%</td>
</tr>
<tr>
<td>Familial Mediterranean Fever: Mild Form (4)</td>
<td>1/5</td>
<td>Unknown</td>
</tr>
<tr>
<td>Fanconi Anemia: Type C (8)</td>
<td>1/101</td>
<td>>99%</td>
</tr>
<tr>
<td>Galactosemia (17)</td>
<td>1/127</td>
<td>>99%</td>
</tr>
<tr>
<td>Gaucher Disease (10)</td>
<td>1/15</td>
<td>96%</td>
</tr>
<tr>
<td>Glucose-6-Phosphate Dehydrogenase Deficiency (4)</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Glycogen Storage Disease: Type 1A (11)</td>
<td>1/71</td>
<td>>99%</td>
</tr>
<tr>
<td>Glycogen Storage Disease: Type III (14)</td>
<td>1/35</td>
<td>>99%</td>
</tr>
<tr>
<td>Glycogen Storage Disease: Type IV (1)</td>
<td>Unknown</td>
<td>42%</td>
</tr>
<tr>
<td>Glycogen Storage Disease: Type VII (3)</td>
<td>Unknown</td>
<td>64%</td>
</tr>
<tr>
<td>Hemoglobin C (1)</td>
<td>Unknown</td>
<td>>99%</td>
</tr>
<tr>
<td>Hemoglobin D (1)</td>
<td>Unknown</td>
<td>>99%</td>
</tr>
<tr>
<td>Hemoglobin E (1)</td>
<td>Unknown</td>
<td>>99%</td>
</tr>
<tr>
<td>Hemoglobin O (1)</td>
<td>Unknown</td>
<td>>99%</td>
</tr>
<tr>
<td>Hunter Syndrome (6)</td>
<td>1/194</td>
<td>92%</td>
</tr>
<tr>
<td>Inclusion Body Myopathy: Type 2 (3)</td>
<td>1/16</td>
<td>>99%</td>
</tr>
<tr>
<td>Joubert Syndrome: Type 2 (1)</td>
<td>1/92</td>
<td>>99%</td>
</tr>
<tr>
<td>Maple Syrup Urine Disease: Type 1B (3)</td>
<td>1/97</td>
<td>>99%</td>
</tr>
<tr>
<td>Maple Syrup Urine Disease: Type 3 (DLD Deficiency) (8)</td>
<td>1/94</td>
<td>>99%</td>
</tr>
<tr>
<td>Metachromatic Leukodystrophy (14)</td>
<td>1/5</td>
<td>50%</td>
</tr>
<tr>
<td>MTHFR Deficiency: Severe (7)</td>
<td>1/39</td>
<td>>99%</td>
</tr>
<tr>
<td>Mucolipidosis: Type IV (4)</td>
<td>1/97</td>
<td>96%</td>
</tr>
<tr>
<td>Nemaline Myopathy: NEB-related (1)</td>
<td>1/108</td>
<td>>99%</td>
</tr>
<tr>
<td>Niemann-Pick Disease: Type A (5)</td>
<td>1/101</td>
<td>95%</td>
</tr>
<tr>
<td>Nonsyndromic Hearing Loss & Deafness: GJB2-related (14)</td>
<td>1/20</td>
<td>96%</td>
</tr>
<tr>
<td>Phenylalanine Hydroxylase Deficiency (PKU) (17)</td>
<td>Unknown</td>
<td>58%</td>
</tr>
<tr>
<td>Polyclonal Autoimmune Syndrome: Type 1 (5)</td>
<td>1/48</td>
<td>>99%</td>
</tr>
<tr>
<td>Primary Hyperoxaluria: Type 3 (2)</td>
<td>Unknown</td>
<td>>99%</td>
</tr>
<tr>
<td>Pseudocholinesterase Deficiency (1)</td>
<td>1/9</td>
<td>>99%</td>
</tr>
<tr>
<td>Retinitis Pigmentosa: DHDDS-related (1)</td>
<td>1/323</td>
<td>>99%</td>
</tr>
<tr>
<td>Short Chain Acyl-CoA Dehydrogenase(SCAD) Deficiency (5)</td>
<td>1/15</td>
<td>65%</td>
</tr>
<tr>
<td>Sickle Cell Anemia (1)</td>
<td>Unknown</td>
<td>>99%</td>
</tr>
<tr>
<td>Spinal Muscular Atrophy (23)</td>
<td>1/46</td>
<td>90%</td>
</tr>
<tr>
<td>Tay-Sachs Disease (32)*</td>
<td>1/29</td>
<td>99%</td>
</tr>
<tr>
<td>Tyrosinemia Type I (10)</td>
<td>1/158</td>
<td>>99%</td>
</tr>
<tr>
<td>Usher Syndrome, Type 1F (3)</td>
<td>1/147</td>
<td>67%</td>
</tr>
<tr>
<td>Usher Syndrome, Type 3 (3)</td>
<td>1/120</td>
<td>92%</td>
</tr>
<tr>
<td>Walker-Warburg Syndrome (1)</td>
<td>1/150</td>
<td>>99%</td>
</tr>
<tr>
<td>Wolman Disease (6)</td>
<td>1/33</td>
<td>>99%</td>
</tr>
</tbody>
</table>
Family history of cancer
Jewish individuals with a family history of breast or ovarian cancer may wish to consider genetic testing for BRCA 1 and BRCA 2. If you would like to know more please ask for information about this.

What are genes and chromosomes?
The body is made up of millions of cells. Usually there are 46 chromosomes in each cell of the body, arranged in 23 pairs. Chromosome pairs numbered 1 to 22 are the same in males and females. The last pair is the sex chromosomes (X and Y) which determine if we are male (XY) or female (XX). In total, our chromosomes contain around 25,000 genes. Genes are the body’s instructions and determine how the body develops and is maintained.

In each cell there are two copies of each chromosome: one which we have inherited from our mother and one from our father. This means we inherit one copy of each gene from each of our parents. Sometimes mutations (alterations) occur in the genes and may cause genetic conditions.

Autosomal Recessive Inheritance
• A carrier of an autosomal recessive disease has one disease-causing copy (mutation) of the gene and a normal gene copy.
• Carriers do not usually have any symptoms of the condition.
• For a child to be affected by an autosomal recessive disease, they must have inherited a mutation from both parents.
• If only one partner is a carrier of an autosomal recessive genetic disease, the couple’s chance to have an affected child is reduced but not eliminated.
• If both partners are carriers of an autosomal recessive genetic disease, the couple’s chance to have an affected child is 1 in 4 or 25%.

This is illustrated in the diagram below:

X-Linked inheritance
• X-linked diseases are caused by a mutation in a gene on the X chromosome.
• Females have two X chromosomes and two copies of each gene. Males have one X chromosome and only one copy of each gene.
• Female carriers have one gene with a mutation and a normal gene copy.
• If the female partner is a carrier for an X-linked genetic disease, the couple’s chance to have an affected male child is 1 in 4 or 25%.

This is illustrated in the diagram below:
Possible Results
There are several possible results for PreconceptGene which are described below:

1) Normal. No further testing is needed. The risk of having a child with an inherited condition is reduced.

2) One partner is shown to be a carrier of an autosomal recessive condition. Testing the other partner would be beneficial. If this partner’s test is normal, no further testing is needed.

3) Both partners are shown to be carriers of the same autosomal recessive condition. There is a 1 in 4 chance of having a child with the condition.

4) Female partner is shown to be a carrier of an X-linked condition. There is a 50% chance of passing on the altered X chromosome. If the altered X is passed on to a boy he will have symptoms of the condition, girls may be affected depending on the condition.

Options
There are several options available when both parents are shown to be carriers of the same autosomal recessive condition, or the woman is a carrier of an X-linked condition.

These include:

a) Natural pregnancy with no testing. There is a risk the child will have the condition.

b) Genetic testing in pregnancy. This is via a CVS or amniocentesis to see if the growing fetus is affected with the specific condition.

c) Preimplantation Genetic Diagnosis (PGD). If both parents are known to be carriers for the same genetic condition, it may be possible to offer a specialised form of in vitro fertilisation (IVF) called preimplantation genetic diagnosis (PGD). This technique involves IVF and genetic testing of embryo(s). Only embryos unaffected with the specific condition are implanted in the woman’s womb.

More information and support can be found at: http://www.jewishgeneticdisordersuk.org/

If you have any questions please contact the genetics team at GeneHealth UK.

 Conditions Tested

- α / β Hemoglobinopathies
- 17-A-Hydroxylase Deficiency
- 17-Beta-Hydroxysteroid Dehydrogenase Type III Deficiency
- 21-Hydroxylase-Deficient Congenital Adrenal Hyperplasia
- 3-Beta-Hydroxysteroid Dehydrogenase Type II Deficiency
- 3-Methylcrotonyl-CoA Carboxylase Deficiency: MCCC1 (MCCA) Related
- 3-Methylglutaconic Aciduria: Type 3
- 6-Pyruvoyl-Tetrahydropterin Synthase Deficiency
- Abetalipoproteinemia
- Achromatopsia: CNGB3 Related
- Acrodactyly: Enteropathica
- Acyl-CoA Oxidase I Deficiency
- Adenosine Deaminase Deficiency
- Adrenoleukodystrophy: X-Linked
- Alkaptonuria
- Alpha-1-Antitrypsin Deficiency
- Alpha-Mannosidosis
- Alport Syndrome: COL4A3 Related
- Alport Syndrome: COL4A4 Related
- Alport Syndrome: X-linked
- Amegakaryocytic Thrombocytopenia
- Andermann Syndrome
- Androgen Insensitivity Syndrome: Complete
- Argininosuccinate Lyase Deficiency
- Aromatase Deficiency
- ARSACS
- Arts Syndrome
- Aspartylcyanosaminuria
- Ataxia with Vitamin E Deficiency
- Ataxia-Telangiectasia
- Autosomal Recessive Polycystic Kidney Disease
- Bardet-Biedl Syndrome: BBS1 Related
- Bardet-Biedl Syndrome: BBS10 Related
- Bardet-Biedl Syndrome: BBS12 Related
- Bardet-Biedl Syndrome: BBS2 Related
- Bare Lymphocyte Syndrome: Type II
- Bartter Syndrome: Type 4A
- Beta-Ketothiolase Deficiency
- Biotinidase Deficiency
- Bloom Syndrome
- Canavan Disease
- Carnitine Palmitoyltransferase IA Deficiency
- Carnitine Palmitoyltransferase II Deficiency
- Cartilage-Hair Hypoplasia
- Cerebrotendinous Xanthomatosis
- Charcot-Marie-Tooth Disease with Deafness: X-Linked: GJB1 Related
- Charcot-Marie-Tooth Disease with Deafness: X-Linked: PRPS1 Related
- Cholesterol Ester Storage Disease
- Chorea Acanthocytosis
- Choroideremia
- Chronic Granulomatous Disease: X-Linked
- Citrininemia: Type I
- Citrininemia: Type I
- Classical Galactosemia
- Congenital Disorder of Glycosylation: Type 1A
- Congenital Disorder of Glycosylation: Type 1B: MPI Related
- Congenital Disorder of Glycosylation: Type 1C: ALG6 Related
- Congenital Lipoid Adrenal Hyperplasia
- Congenital Neutropenia: Recessive
- Corneal Dystrophy and Perceptive Deafness
- Corticosterone Methyloxidase Deficiency
Creatine Transporter Defect
Crigler-Najjar Syndrome
Cystic Fibrosis
Cystinosis
D-Bifunctional Protein Deficiency
Diabetes: Recessive Permanent Neonatal
Dihydropyrimidine Dehydrogenase Deficiency
Du Pan Syndrome
Dystrophic Epidermolysis Bullosa: Recessive
Ehlers-Danlos Syndrome: Type VII C
Ellis-van Creveld Syndrome
Emery-Dreifuss Myopathy: Type 1
Ethylmalonic Aciduria
Fabry’s Disease
Factor IX Deficiency
Factor VIII Deficiency
Familial Dysautonomia
Familial Hyperinsulinism: Type 1 (ABCC8-related)
Familial Hyperinsulinism: Type 2: KCNJ11 Related
Familial Mediterranean Fever
Fanconi Anemia: Type C
Fragile X Syndrome
Fumarase Deficiency
Galactokinase Deficiency
Gaucher Disease
Gitelman Syndrome
Globoid Cell Leukodystrophy
Glucose-6-Phosphate Dehydrogenase Deficiency
Glutaric Acidemia: Type I
Glycine Encephalopathy: AMT Related
Glycine Encephalopathy: GLDC Related
Glycogen Storage Disease: Type IA
Glycogen Storage Disease: Type IB
Glycogen Storage Disease: Type II (Pompe Disease)
Glycogen Storage Disease: Type III
Glycogen Storage Disease: Type IV
Glycogen Storage Disease: Type V
Glycogen Storage Disease: Type VII GM1-Gangliosidoses
GRACILE Syndrome
Guadinonacetate Methyltransferase Deficiency
Hemochromatosis: Type 1: HFE Related
Hemochromatosis: Type 2A: HFE2 Related
Hemochromatosis: Type 3: TFRI Related
Hereditary Fructose Intolerance
Herlitz Junctional Epidermolysis Bullosa: LAMA3 Related
Herlitz Junctional Epidermolysis Bullosa: LAMB3 Related
Herlitz Junctional Epidermolysis Bullosa: LAMC2 Related
Hermansky-Pudlak Syndrome: HPS3-related
HMG-CoA Lyase Deficiency
Holocarboxylase Synthetase Deficiency
Homocystinuria Caused by CBS Deficiency
Hunter Syndrome
Hurler Syndrome
Hydroptic Ectodermal Dysplasia: X-Linked
Hypophosphatasia
Inclusion Body Myopathy: Type 2
Isovaleric Acidemia
Joubert Syndrome: Type 2
Juvenile Retinoschisis: X-Linked
Laryngoonychocutaneous Syndrome
Leber Amaurosis
Leigh Syndrome: French-Canadian Type
Limb-Girdle Muscular Dystrophy: Type 2D
Limb-Girdle Muscular Dystrophy: Type 2E
Limb-Girdle Muscular Dystrophy: Type 2F
Lipoprotein Lipase Deficiency
Long Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency
Luteinizing Hormone Resistance (Leydig Cell Hypoplasia)
Maple Syrup Urine Disease: Type 1A
Maple Syrup Urine Disease: Type 1B
Maple Syrup Urine Disease: Type 3 (DLD Deficiency)
Medium Chain Acyl-CoA Dehydrogenase (MCAD) Deficiency
Metachromatic Leukodystrophy
Methylmalonic Acidemia: MMAA Related
Methylmalonic Acidemia: MMAB Related
Methylmalonic Acidemia: MUT Related
Methylmalonic Aciduria and Homocystinuria: Type cblC
Mucolipidosis Type IV
Mucolipidosis: Type I/II
Muscle-Eye-Brain Disease
Myotubular Myopathy: X-Linked
Nemaline Myopathy: NEB-related
Nephrotic Syndrome: Type 1
Nephrotic Syndrome: Type 2
Neuronal Ceroid-Lipofuscinosis: CLN3 Related
Neuronal Ceroid-Lipofuscinosis: CLN6 & PPT1-related
Neuronal Ceroid-Lipofuscinosis: CLN6 Related
Neuronal Ceroid-Lipofuscinosis: CLN8 Related
Neuronal Ceroid-Lipofuscinosis: MFSD8 Related
Neuronal Ceroid-Lipofuscinosis: TPP1 Related
Niemann-Pick Disease: Type A
Niemann-Pick Disease: Type B
Niemann-Pick Disease: Type C1
Niemann-Pick Disease: Type C2
Nijmegen Breakage Syndrome
Nonsyndromic Hearing Loss & Deafness: GJB2-related
Omitline Transcarbamylase Deficiency
Omitline Translocase Disability
Pendred Syndrome
Persistent Mullerian Duct Syndrome: Type 1
Persistent Mullerian Duct Syndrome: Type II
Phenylalanine Hydroxylase Deficiency (PKU)
Polyglucanster Autoimmune Syndrome: Type I
Primary Hyperoxaluria: Type 1
Primary Hyperoxaluria: Type 2
Primary Hyperoxaluria: Type 3
Progressive Familial Intrahepatic Cholestasis: Type 2
Propionic Acidemia: PCCA Related
Propionic Acidemia: PCCB Related
Pseudocholinesterase Deficiency
Pycnodysostosis
Pyruvate Dehydrogenase Deficiency: Autosomal Reccessive
Pyruvate Dehydrogenase Deficiency: X-Linked
Retinitis Pigmentosa: DHDDS-related
Rhizomelic Chondrodysplasia Punctata: Type I
Siala Disease
Sandhoff Disease
SCID: X-Linked
Severe MTHFR Deficiency
Short Chain Acyl-CoA Dehydrogenase (SCAD) Deficiency
Sjogren-Larsson Syndrome
Smith-Lemli-Opitz Syndrome
Spinal Muscular Atrophy
Stuve-Wiedemann Syndrome
Sulfate-Transporter-Related Osteochondrodysplasia
Tay-Sachs Disease
Tyrosine Hydroxylase Deficiency
Tyrosinemia: Type 1
Usher Syndrome: Type 1B
Usher Syndrome: Type 1C
Usher Syndrome: Type 1D
Usher Syndrome: Type 1F
Usher Syndrome: Type 2A
Usher Syndrome: Type 2D
Very Long-Chain Acyl-CoA Dehydrogenase Deficiency
Walker-Warburg Syndrome
Wilson Disease
Wolman Disease
Zellweger Spectrum Disorders: PEX1 Related
Zellweger Spectrum Disorders: PEX10 Related
Appointments
Call 0800 331 7177
Mon-Fri 08.00 and 20.00
Sat 09.00 - 12.00

Clinics - Locations
Please visit our website www.GeneHealthUK.com/Clinics for an up-to-date list of clinic locations and directions. Please be aware that most genetic counselling sessions are undertaken by phone so a clinic may not be needed.

GeneHealth UK is the leading provider of genetic tests and offers national and international counselling and testing services. We have designed our services to be comprehensive and to detect all of the clinically relevant mutations, however no genetic test will pick up all genetic mutations. If your results are abnormal you may be eligible for referral to an NHS clinic via your GP, or to a consultant in one of our private clinics throughout the UK. This may be funded by either self-pay or private medical insurance.

Please visit www.GeneHealthUK.com for more information and advice.

GeneHealth UK is part of Check4Cancer Ltd